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SUMMARY 

The computational analysis of thermohygrometric and mechanical behaviour of concrete structures is 
carried out by means of the finite element method. To evaluate the thermal and hygral performance of this 
material together with the damage and creep effects, the knowledge of the heat and moisture transfer 
processes taking place inside the medium is first required and then the consequent mechanical behaviour can 
be analysed. The theoretical approach used to obtain the governing differential equations for heat and 
moisture transfer is based on the procedure of averaging continuum equations applied to heat and mass 
transfer and drying processes. According to that model the same set of equations is used to represent both 
the saturated zone (if present), the unsaturated one and the water-vapour phase changes. The mechanical 
formulation is based on the virtual work principle and incorporates Prony-Dirichlet series expansion to 
represent the relaxation or creep functions, avoiding the memorization of the whole strain or stress history. 
Damage effects are taken into account within a coupled formulation, following a procedure presented in 
a previous paper. At this preliminary stage the analysis is performed in two stages (first the heat and mass 
transfer and then the mechanical analysis) using two FEM computer codes in sequence to apply the 
proposed approach to structures of any shape. 
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INTRODUCTION 

Moisture in concrete structures arises from the combined action of different causes such as the 
initial moisture content (due to the manufacturing process), rainwater infiltration, surface con- 
densation (when the surface temperature approaches the dew point of the surrounding air), 
capillary rising and capillary condensation (due to meniscus curvature inside pores induced by 
surface tension that alter the equilibrium between the liquid water and the partial pressure of the 
water vapour). The effect of moisture on building structures is to lower thermal resistance 
(increasing heat losses) and to induce damages (such as blister formation, dimensional change, 
degradation of strength and mold growth). Moreover creep and shrinkage of concrete are 
strongly related to moisture transfer phenomena. To evaluate the thermal and moisture transmis- 
sion behaviour and the related stresses and strains of porous building materials and to compre- 
hend and/or anticipate the moisture induced degradation a thorough understanding of the heat 
and moisture transfer phenomena taking place inside them is required. Therefore theoretical 
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models allowing to analyse and forecast the combined heat and mass transfer in porous media are 
needed. 

Such phenomena are quite complex because they involve not only heat conduction and vapour 
diffusion (as proposed by Gla~e r ’ -~ )  but, as suggested by Philip and De Vries4 and De V r i e ~ , ~  also 
heat convection, liquid water flow because of pressure gradients or capillary effects and latent 
heat transfer due to water phase change (evaporation and condensation) inside the pores. It is 
now assumed that moisture transfer in porous media cannot be interpreted with a purely diffusive 
model (see the thorough review presented by Whitaker6 and the numerous references cited in his 
paper) and that a formulation based on diffusion like equations, as the one presented by Luikov,’ 
implies the use of transport coefficients that lump together different transport mechanisms, 
masking the dependence on the different controlling variables, as observed by Chen and Pei8 As 
Whitaker6 pointed out, good agreement between the theory and experiments can be obtained 
with such models only by allowing each transport coefficient (‘diffusivity’) to be a complex and 
highly non-linear function of the moisture content and temperature. This results also from the 
theory proposed by Philips and De Vries4 and De Vries.’ 

The theoretical model used here is the one proposed by Whitaker6s9 which was developed 
starting from the equations of continuum mechanics, following the approach originally proposed 
to study the dynamics of water flow in unsaturated soils by Bear,l0g1’ Bear and Ba~hmat” - ’~  and 
Hassanizadeh and Gray.l5-’’ Such approach has been applied by Whitaker6*9 and, more 
recently, by other authors (Chen and Pei,8 Nasrallah and Perre,I8 Ilic and Turner”*z0) to drying 
problems. 

The mechanical analysis is carried out to calculate stresses and strains due to the variations of 
moisture and temperature inside the material. As far as the constitutive relationship is concerned, 
an analytical formulation is adopted here to take into account viscoelasticity and damage. The 
formulation is based on the approximate evaluation of the superposition integral. In Majorana” 
viscoelastic models including isotropic damage effects were considered, by introducing in the 
stress-strain relationship expressed as Stiltjes integrals the effective stress concept of Lemaitre,” 
or forms of the relaxation or creep functions which include already damage, as in Bazant and 
Pra~annan.’~ Note that the above meaning of effective stress differs from the usual one in soil 
mechanics. In this paper anisotropic damage is taken into account, following Ramtaniz4 and is 
further coupled with viscosityz5 to better model the time transient behaviour of concrete. The full 
two-step model allows to simulate by means of the finite element method the evolution of 
temperature, moisture content, the global kinetic of the process and stresses and strains. The finite 
element technique was previously successfully applied to porous media thermomechanical 
problems in References 26 and 27. 

HEAT AND MASS TRANSFER FORMULATION 

The formulation of heat and mass transfer in porous media is obtained starting from the 
appropriate equations in local form expressing the laws of continuum physics (see, for example 
Reference 28), specifically the continuity equation for each considered species, the Navier-Stokes 
equation for quasi-steady creeping flow (i.e. with the time dependent and convective terms 
neglected) and the energy equation (enthalpy balance) with reversible work, viscous dissipation, 
and other irreversible sources neglected. In general such equations cannot be solved because of 
the complex geometry of the porous media, but using the volume averaging technique15-’ ’ q 6  we 
can obtain equations averaged on a representative elementary volume (REV)15 of the porous 
medi um . 
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Following Whitaker6 and using the multiphase Darcy’s law applied to the liquid phase: 

and applied to the gas phase: 

where vl and v, are the velocities, respectively, of the liquid and the gas phase, the capillary 
pressure equation is P, = P, - PI, where P1 the pressure of the liquid-phase (water), and finally, 
the equation of state of perfect gas, applied to dry air P,, = pgaTR/M, ,  to vapour 
P,, = p,,TR/M, and moist air P, = P,, + Pgw, p, = pga + pgw the conservation equations can 
be written as follows (see References 6,9 and 18-20 for their derivation): 

dry air conservation 

water (liquid-vapour) species conservation 

energy conservation (enthalpy balance) 

These equations must be supplemented with thermodynamic relationships (perfect gases’ law 
and Clausius Clapeyron equation) and constitutive equations (that express the relationships 
between relative permeabilities Krg, Kr1, saturation S ,  partial vapour pressure Pgw, and capillary 
pressure Pc), needed for the closure of the model. For details see the References 6,9,10,18 and 19 
and Baggio and B ~ n a c i n a . ~ ~  This model employs the same equations, (1)-(3), to represent both 
the unsaturated and the saturated zones (if present). Phase-change phenomena are also taken in 
account. 

For the relationship between the relative humidity and the capillary pressure in the concrete 
pores the Kelvin-Laplace law is assumed to be valid: 

p,w R.H. = - = exp 
p g w s  

(4) 

Since the capillary pressure Pc is equal to the water potential Y multiplied by a constant (i.e. 
P, = - p l y ) ,  equation (4) can be used also below the capillary region (see Appendix I). 
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MECHANICAL FORMULATION 

The set of equations governing thermohygrometric and mechanical behaviour of concrete in 
viscoelastic range without damage effects has been presented in References 30 and 31 where 
a different thermohygrometric model was used. In Reference 21, damage influences on the 
constitutive relationship and on some thermohygrometric and mechanical characteristics such as 
diffusivities and thermal/hygral expansion coefficients have been taken into account, considering 
the isotropic damage model of Mazars and Pi ja~dier-Cabot .~~ Here a formulation based on the 
finite element technique is used taking into account geometrical non-linearities, as well as 
viscoelasticity coupled with damage. The geometrically non-linear approach is useful because in 
anisotropic models the principal directions of damage rotate. Hence the variables which control 
the evolution of damage (true strains), rotate also and must be referred to evolving geometrical 
configurations even if strains remain small. Here we consider such situations with small strains, 
hence the heat and mass transfer formulation stated in previous section, within a linearized 
geometrical framework, is considered sufficiently accurate. 

In the adopted geometrically non-linear description of the problem, the Cauchy stress tensor 
(r is replaced by the second Piola-Kirchhoff stress tensor S with the associated Lagrange strains 
E, both referred to the material conf ig~ra t ion .~~ The stress and strain tensors S and E are 
energetically conjugate and may define covariant constitutive relationships, preserving material 
frame indifference under any diffeom~rphism.~~ The geometry is referred to a Cartesian ortho- 
gonal frame, as a particular case of the more general riemannian one. 

The total lagrangian formulation has been used to calculate the desired quantities with 
reference to the initial undeformed configuration. The approximate equation of motion can be 
written hence as follows: 

j v S o 6 E o  d V, = R 

where R is the external virtual work evaluated at time t + At. The strain variation and stress 
components are 

SEE = $6 [ ~ f j  + u?j  + U& u&] (6) 

S c  = J J O I X ~ , , O ~ , , X Y , , ,  (7) 

with uij displacement components and x i  spatial co-ordinates. 
The viscoelastic constitutive relationship taking into account damage effects presented in 

References 21 and 31 is rewritten in terms of finite strain formulation, using the second 
(symmetric) Piola-Kirchhoff stress tensor S and the associated lagrangian strains.35 The coupling 
of viscoelasticity and damage follows a procedure similar to that employed in Reference 36. In 
that paper, viscous response was characterized by a linear rate constitutive equation and 
a convolution representation to generalize viscoelastic models with linearized kinematics to the 
case of non-linear geometry. Continuum damage mechanics was further employed to take into 
account the degradation of the stiffness. In numerical perspective, a local additive decomposition 
of the stress tensor into initial and non-equilibrium parts was considered. This model allows to 
recover the elastic behaviour at the end of very slow and at the beginning of very fast processes. 
Elastic damage at finite strains is incorporated in the procedure, reducing the free energy by the 
factor l[l-D[l, with D is the damage tensor. As in the above paper, the damage model is based 
here on maximum strain concept. A computational simplification is introduced where damage 
tensor D is taken constant within a time step increment. With this hypothesis D is evaluated once 
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at each step without additional iterations at the end of each time increment. The following 
viscoelastic-damage coupled matrix is hence obtained: 

where C1, C2 and C3 do not depend on the deformations” (their expressions are reported in 
Appendix 11); the terms Eoo are imposed strains, hence in the previous equation they must be 
interpreted as known terms, like the term R,” which is dependent on such strains (p = 1, N 
Maxwell chain units); finally the terms ‘E0 and Q,” (where the last one depends on the 
calculated strains) are to be interpreted again as known terms. Do is the damage tensor. 

Using the incremental decompositions E: = ‘E:  + AE:, AE: = A&: + Aq: (with e i j ,  qij linear 
and non-linear parts of the strain tensor, respectively), observing that for our purpose 
6E: z 6AE:, and assuming further that 6AEoT = 6Aeo’, and (1 - Do} Cy.AEo = (1 - Do} Cy.Aeo 
the following equation of motion is obtained: 

JvdAeoT{{l - Do}Cl-Aeo}dVo 

2,=1 l N  11 + ~ v d ~ ~ o T { { ~ - D o } [ C l ~ ‘ E o + C 2 E o o + C 3 ~ ‘ E o - -  l N  c a,”+-  1 R,” dVo 
2,=1 

l N  
C 1 ~ ‘ E o + C ~ * E o o + C 3 - ‘ E o - -  1 

2,=,  

EQUATION DISCRETIZATION AND NUMERICAL SOLUTION 

The numerical solution is carried out by the finite element technique in two uncoupled steps. 

Heat and mass transfer solution 

approximated with the expansions: 
As far as the thermohygrometric problem is concerned, the variables P,, P,, and T are 

P,  z C N i P , i  = NP,, P, 2 C N i P c i  = NP,, T z  CNiTi = NT (10) 

where N are the shape functions,34 Pgi, Pci, Ti the nodal values of the variables and P,, P,, Ti the 
vectors of the nodal values. The semi-discretization of the conservation equations (1)-(3) (and of the 
other ones required to complete the model) with the standard Galerkin method (weighted  residual^)^' 
results in a non-symmetric, non-linear coupled system of ordinary differential equations of the form: 

(1 1) 
dx 
dt 

C(X) - + K(x)x + f(x) = 0 

where 

and the definitions of the non-linear (matrix) coefficients C(x), K(x) and f(x) are reported elsewhere.29 
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The time-discretization is accomplished through a fully implicit finite difference scheme, i.e. the terms 
in equation (1 1) are evaluated at the end of the interval It, t + At[, where At is the time step. 

Preliminary tests revealed that the Crank-Nicholson scheme (central differences) was unstable and 
was then abandoned. Considering the strong non-linearity of the system of equations (1 1) the solution 
is obtained with a Newton-Raphson method. Based on this discretization, the HMTRA research 
computer code has been developed for the solution of the non-linear and non-symmetrical system of 
equations governing heat and mass transfer. 

The details pertaining equations, boundary conditions, discretization and computer code can be 
found in Reference 29. 

Mechanical solution 

As far as the mechanical problem is concerned the procedure used is described in what follows. By 
introducing discretization in space by means of finite elements, equation (9) becomes 

(13) 

In equation (13), Bo, BL, G are the initial, linear and non-linear strain matrices, respectively. 
A complete description of the introduced relationships can be seen in Reference 35. 

After solving the system of algebraic equations (13), the strains at time tn+  = t,, + At,, can be 
calculated as 

E ( t n + ~ ) =  CBO + B ~ I u ( t n + l )  (14) 

The stresses are then obtained by the standard procedure for viscoelasticity with dam- 
age.21,36,38 The procedures were implemented in the finite element code DAMVIS. 

NUMERICAL COMPUTATIONS 

Some numerical simulations were carried out starting from the data reported in Acker et a1.39 for 
a concrete cylinder where creep and shrinkage phenomena develop. 

Considering the cylindrical shape of the sample, a mesh extended to a quarter of the cylinder of 
72 (9 x 8) axisymmetric eight noded serendipity elements was used (Figure 1). 

The sample was assumed to be initially at 99 per cent relative humidity and at a temperature of 
22°C. The surrounding air was assumed to have the same temperature and a relative humidity 
equal to 50 per cent. A convective boundary condition for the temperature was imposed at the 
interface between the sample and the air with a surface heat exchange coefficient equal to 
4 W m - ' K - '  . The surface mass exchange coefficient for the water vapour was set equal to 
04036 m s-'. Heat generation and curing were not considered in the numerical examples, 
although the relative effects can be taken into account by the used program (see e.g. Reference 30). 

The concrete was assumed to have a total porosity rp of 16.7 per cent, an absolute permeability 
K equal to 3-97 x 10-20(m2) and a dry thermal conductivity 1 equal to 2.5 Wm-'K-' .  The 
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z 
L Y  

Figure 1 .  Finite element mesh of a quarter cylinder (axysimmetric) 

diffusion of water vapour was assumed to take place in the part of the pores not filled with liquid 
and a tortuosity factor z = 0.25 was considered to take in account the microstructure of concrete. 
The effective diffusivity was then set equal to Deff = z( l  - S ) D ,  where Do is the diffusivity of 
water vapour in air. 

As far as damage is concerned different formulations were used (i.e. those due to Mazar~ ,~’  and 
due to Kachanov and Kachanov-Rabotnov’’) to take into account also time transient damage as 
occurs in primary, secondary and tertiary creep ranges.40 The above models were chosen as 
examples because of their easy calibration for a given concrete. We emphasize again that the 
implemented procedure is general, hence in principle any type of damage relationship, depending 
on a given tensor (intended as a parameter) and time can be used. Non-local formulation of strain 
controlling damage was also incorporated (see Appendix 111). 

Tensile and compressive damage effects were considered and the following data were assumed: 
damage threshold K = 0.00011, and A,  = 08, A ,  = 1.4, B, = 2000, B, = 1850 (Mazar’s model), 
Ak, = 0.0001 1, Ak, = 0.0003, k = 9, r = 30 (Kachanov and Rabotnov model), corresponding to 
compressive cylindrical strength of 35 MPa and a tensile strength of 3.5 MPa, characteristic 
length for non-local model I = 2.8 cm. Several simulations have been carried out. Here two of 
them are reported as example. In Figures 2(a) and 2(b) the relative humidity profiles in the sample 
at different times (days) are presented. 

The time transient relative humidity of a nodal point is shown in Figure 3 where a comparison 
between the purely diffusive model and the novel one (coupled heat and mass transfer including 
phase changes) is also demonstrated. The two approaches qualitatively agree quite well, although 
a direct comparison is not possible, since they are conceptually different. It should also be 
remarked that purely diffusive models only have been traditionally used for the analysis of mass 
transfer inside ~oncre te .~’  

As far as the mechanical problem is concerned, the total damage of the outer zone of the 
cylinder can be seen in Figure 4 where damage versus radius of a transverse section of the cylinder 
is reported for different time values. The axial, hoop and radial stresses are shown in Figures 5-7. 
The results agree well with those found in Reference 39, both in terms of humidities and stresses. 
The non-local formulation assures that mesh-independent results can be obtained” (the influence 
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Figure 2. (a) Relative humidities versus radius; (b) Relative humidities versus height (time in days) 

radius considered is r = 1.5 cm with 15 Gauss points involved instead of 80 if the whole domain is 
considered). Time transients of the vertical stress component at two nodal points are shown in 
Figures 8 and 9 comparing the purely diffusive model with the novel one. 

The next example deals with massive concrete. The purely diffusive and the new model are used 
for comparison. 

A concrete sample was assumed to be initially at a relative humidity of 99 per cent and at 
a temperature of 27°C. The surrounding air was assumed to have the same temperature and 
a relative humidity equal to 60 per cent. 



THERMO-HYGRO-MECHANICAL ANALYSIS OF CONCRETE 581 

2.0 

0.0 

-2.0 

-4.0 

0.0 20.0 40.0 60.0 80.5 

radius [mm] 

Figure 4. Damage versus radius at different times (days) 
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Figure 5. Axial stress versus radius at different times (days) 

For comparison, in the purely diffusive model, the following properties were selected (corres- 
ponding to a concrete of better quality than the previous one, with compressive cylindrical 
strength equal to 55 MPa): 

(1) Diffusivity at 28 days in saturated conditions depends on the concrete composition. In the 
actual case, a value of the diffusivity guaranteeing the maximum penetration of the 
hygrometric field inside the casting has been chosen as 20 mm2/days. 
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Figure 6. Hoop stress versus radius at different times (days) 
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Figure 7. Radial stress versus radius at different times (days) 

(2)  Also the other parameters in the well known non-linear diffusion  la^,'^,^' i.e. q,, k, and 
n depend on the mix design. In particular, h, is chosen as the mean value of the ambient and 
initial humidities, with k, = 0.75 for an environmental relative humidity equal to 0.5. The 
parameter n is usually recommended in the range 6-16; n = 6 has been taken here. Finally 
O L ~  = 0.005. 
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Figure 8. Time transient of axial stress at the top surface (nodal point B) 
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Figure 9. Time transient of axial stress at the top surface (nodal point C) 

(3) Particularly important is the choice of the free shrinkage. This parameter can be considered 
as a constitutive property of the material; it is the shrinkage at t = to in absence of inner 
stresses. Lower and upper limits of this parameter can be found in literature. W i t t m a ~ ~ n ~ ~  
shows a diagram of unrestrained shrinkage as a function of the relative humidity for 
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Figure 10. Assumed stress-strain relationship of concrete 
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Figure 11. Damage versus strain in tension and compression (D, = damage in tension, D, = damage in compression, 
D = total damage) 

Figure 12. Finite element mesh in the intermediate zone of massive casting 
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L U' 

a concrete with w/c  = 0.35, similar to that of the concrete used here. From the diagram it 
appears that the unrestrained shrinkage tends with a zero value of the relative humidity to 
0.00035-0.004. Here a value of 0.002 has been taken, also based on existing relationships 
between shrinkage and water content variation. 

Some preliminary analyses on cylindrical samples of limited dimensions (as those of the 
previous example) have been carried out for calibrating the stress-strain behaviour of the chosen 
concrete. In this case the sample is subjected to physical loads only, in order to keep out the effects 
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Figure 13. Finite element mesh in a corner zone of massive casting 
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Figure 14. Temperatures versus radius at different times 
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of shrinkage and thermal variations. The applied load assumes different values, so as to induce 
various degrees of damage in the sample. It is hence possible to find the stress-strain relationship 
of Figure 10 together with the patterns of the compressive, tensile and total damages as function 
of the reference strain (Figure 11). The analysis of a concrete cylinder of large dimensions (massive 
concrete casting) has then been carried out taking the constitutive relationship of Figure 10 and 
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Figure 15. Relative humidities versus radius at 19 years 
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Figure 16. Relative humidities versus radius at 3.6 years 
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designing an appropriate mesh. Of this mesh, a strip representative of an intermediate zone where 
the fluxes are essentially one-dimensional is reported in Figure 12 and in Figure 13 a typical 
angular zone. The chosen finite elements are quadratic and integrated with a gaussian scheme 
with nine points for temperature and humidity and four points for displacements. 

Time transients of the humidities, temperatures, displacements, stresses and strains are ob- 
tained, together with those of the damage of the employed material (Figures 14-18). The hygral 
exchange between the sample and the ambient appears in the outer zone of the cylinder only 
during the first 50 years after casting, letting the inner massive zone of the concrete in conditions 
of almost total saturation (99 per cent R.H.) as at the beginning of the process. The strip where the 
process is acfive is about 0.5 m for the thermohygral phenomenon and 1 m for the mechanical 
one. This is an accordance with the experimental findings of Mamillan and Boineau4' and those 
of A ~ k e r . ~ ~  The results also confirm the impossibility to proceed in the case of massive castings 
with calculations where mean values are taken along the thickness for phenomena of this kind. 

The stress and strain states are found using the viscoelastic-damage model presented above. 
The evolution of the stress components show that the strength limit at tension can be reached. In 
such cases the onset of damage is predicted in the same regions. The strain components rapidly 
change from negative (due to compression) to positive (due to tension), together with local 
material damaging. Observing the stresses along a transverse section of the model, a stress 
penetration of about 1 m can be observed (see Figure 17). Compression, tension and total damage 
are compatible with the developed strains both in time and along significant sections. The 
damage starts at the time of occurrence of maximum strain at the boundary, which is about 
10 days after casting. If wanted, maximum damage could be adequately controlled using better 
quality concretes. 
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Figure 17. Radial profile of axial stress (MPa) at 18 years 
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Figure 18. Axial stress versus 0.2 m below the middle point of the upper flat surface 

CONCLUSIONS 

An enhanced model which takes into account phase changes has been used here to simulate heat 
and mass transfer in porous materials and particularly in concrete. Compared to the traditional 
diffusive-only model such a procedure results in an improvement of the description of physical 
phenomena occurring in drying concrete, especially when temperature effects are important. It 
has to be pointed out that, even starting from isothermal initial conditions, heat transfer pheno- 
mena can take place because of phase changes (evaporation and condensation). 

For the mechanical behaviour a viscoelastic model coupled with damage concepts is used. The 
proposed two-step procedure is capable of simulating the behaviour of normal and massive 
concrete castings under variable ambient conditions, as shown in the examples. 

The model has engineering significance from several viewpoints: 

(i) It permits the prediction of thermal, hygral and mechanical performance of concrete which 
is particularly important for bridges, dams, nuclear reactors and other structures with 
preminent social impact. 

(ii) It allows to control the physical and structural response in time with respect to a given mix 
design and hence to improve the mix design before construction. 

(iii) Its flexibility permits to incorporate other features, like durability, attack of pollutant 
agents to evaluate their effects.44 

APPENDIX I: CAPILLARY PRESSURE AND WATER POTENTIAL 

Equation (4) (i.e. Kelvin's law) can be rewritten as 
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When a liquid is in equilibrium with its vapour, the specific (mass) Gibbs functions (or thermo- 
dynamic potentials) of the two phases are equal and then 

91 = 9" and dg, = 4 "  (16) 

dg, = - s,dT + u,dP,, (17) 

The differential of the Gibbs function of the vapour dg, is given by the well-known expression: 

where v, = l/pgw is the specific (mass) volume of the water vapour and s, is the specific (mass) 
entropy of the water vapour. Assuming that the vapour behaves as an ideal gas, i.e. 
P,, = pgwTR/M, or P,, = RT/M,v,, (17) becomes 

R T  
dg, = - s,dT + ~ dP,, 

M w  P,, 
If we integrate (18), considering an isothermal evolution (dT = 0), from the conditions of 
equilibrium of the vapour with bulk liquid on a flat surface (vapour pressure equal to the vapour 
tension Pgws) ,  up to the actual value of the vapour pressure inside the porous medium, we obtain 

Equation (19) gives the difference between the Gibbs function of the water inside the porous 
media in equilibrium with vapour at pressure P,, and the bulk liquid water, at the same 
temperature. From the thermodynamic point of view, moisture stress or water potential Y ,  is then 
defined as the specific (mass) Gibbs function (or specific thermodynamic potential) of water in 
a porous medium, referred to pure liquid at the same temperature, and it is given by 

Comparing (20) with (15), it is immediately evident that 

Assuming the liquid incompressible (pI = cost.), the capillary pressure P, is then equal to the 
water potential Y multiplied by a constant ( -pl). The water potential Y is defined for all the 
conditions of water retained inside a porous medium (monolayer surface adsorption, multilayer 
surface adsorption and capillary suction) while the capillary pressure P, has a clear physical 
meaning, i.e. P, = P,  - P I ,  only when liquid water (sometimes called free water) is present. 
Redefining the capillary pressure as P,  = p l y ,  equation (4) or (15) can be used even for water 
contents below the capillary region. 

APPENDIX 11: NUMERICAL FORMULATION OF VISCOELASTICITY AND DAMAGE 

The numerical formulation here presented is based on the developments presented in Reference 
30, where only viscoelasticity was taken into account. The coupling with damage was considered 
in Reference 21 and will be summarized here, including also anisotropic effects. Indications to 
include finite strain will be given at  the end of this Appendix. The stress-strain relationship used 
here is a straightforward generalization of the same relation reported in Reference 30. Now 
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a damage factor (1 - D[E*(~), t]} is also considered: 
N 

a(t) = [l - D(E*(~), t ) ]  Ep(t"Y'(':)-Y'('')[dE(t') - deo(t') 

C-' is eliminated through 

Dp(tL) = C-'E,(tb) 

yielding 
t N  

a(t) = [l - D(E*(~), t)] D,(tb) eY~(ti)-yu(tJ [ds(t') - ds'(t')] 
O r = l  

Using integration by parts, the previous relation is transformed as follows: 

~ ( t )  = C - ' R ( t , t ) [ l  - D(~*(t),t)] [ ~ ( t )  - ~ ' ( t ) ]  

aR(t, t') 
at' 

- [l - D(E*(~), t')] j: C - ' ( t : )  ___ [ ~ ( t ' )  - ~' ( t ' ) ]  dt' 

where C- 'R( t ,  t )  [l - D(E*(~), t)] represents the stress at time t, due to a unit strain at the same 
time instant. 

Integrating in time by finite differences, when time t is subdivided in n finite intervals 
At = ti+ - ti with t l  = 0 and t,+ = t, the following stress-strain relationship is obtained: 

N 

a ( t n + l )  = - D(E*(tn+l), t n + l ) I  1 Dp(te.+l)E(tn+l) 
p = l  

N 

- C1 - D(~*(tn+l),tn+1)I c Dp(teqt1)E0(tn+l) 
p =  1 

1 
- - [l - D(E*(t,+l),tn+l)] 

2 p = 1  

p =  1 

1 
2 

- - [l - D(E*(~,+ 

with Q p , n + l  and Rp,n+ defined below. 

work principle: 
Substituting equation (26) in the equilibrium equation at time t,+ as obtained by the virtual 

6ET ~ ( t , +  l)dV = 6uT F(t,+ i., 
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where 

1 N 
- D (t n)e(- 'wl+tJ7,  1 ( tn ) +  C Qp,n+l dV p e  

p=1 

N 1 
FMTH = - - BT - D(&*(tn+ 11, t n +  113 R p , n +  1 d V  

2 i s ,  p =  1 

u(t,+ 1) is the vector of unknown displacements. 
In equation (30) Qp,n+l and Rp,n+l are respectively defined by 

with 
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with 
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i = l  

Equation (26) can be rewritten in compact form as follows: 

where 

The relations are used in the non-linear formulation reported in the paper, where stress and strain 
measures were replaced by the corresponding ones in finite strains. 

APPENDIX 111: NON-LOCAL DAMAGE MODEL 

A non-local formulation is also used in this paper to better model the damage effects of concrete and to 
obtain objective solutions, with respect to the adopted dis~retizations.~~ 

The non-local model adopted is based on the following assumption to evaluate the strain variable E: 

i r  

E(X) = ~ ' J ~*(s)cr(s - x)dV 
K ( X )  v 

(37) 

where E is the equivalent strain (in Mazars' model), x is the coordinate of the current Gauss point s the 
coordinate of the generic Gauss point, a the weight function defined as cr(s - x) = e(k18s-x1111)2 and V, the 
characteristic volume defined as K(x) = s,a(s - x)dV. Constant k in two-dimensional problems is 
equal to 2; 1 is the so called characteristic length. Typically 1 E 2.8 d,, where d, is the maximum 
dimension of concrete aggregate. The meaning of V,  is similar to that of a representative 
elementary volume in heterogeneous materials theory. 

In this model the only non-local variable is the strain controlling damage, e.g. the strain related to the 
strain-softening branch of the stress-strain diagram of concrete. All the other other variables are 
computed in a local manner. 

NOTATION 

Bo initial strain matrix 
B, linear strain matrix 
C, effective specific heat of the porous material, J kg-' K-' 

C,, specific heat of the gas mixture, J kg-' K-' 
C, specific heat of the solid matrix, Jkg-' K-'  
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Greek symbols 
Ahvap 

&O 

ACff 

& 

P1 
P 

Ps 
Pga 

Ppw 

P1 

CT 

(r 

4 

specific heat of the liquid phase (water), Jkg-' K- l  
viscoelastic dependent terms (i = 1 , .  . . , 3 )  
effective diffusivity of the gas mixture, m2 
damage tensor 
Green-Lagrange strain tensor 
autogeneous Green-Lagrange strain tensor 
gravity acceleration vector (= 980665 m s - ~ )  
non-linear strain matrix 
Jacobian matrix 
absolute permeability, m2 
relative permeability of the gas phase 
relative permeability of the liquid phase 
molar mass of the gas moisture (moist air), kgkmol-' 
molar mass of the dry air, kg kmol- 
molar mass of the water vapour, kgkmol-' 
capillary pressure, Pa 
pressure of the gas phase, Pa 
water vapour partial pressure, Pa 
water vapour saturation pressure, Pa 
load vector of the Maxwell chain. units 
gas constant (8314.41 Jkmol-' K-l) 
external virtual work vector, N 
load vector of the Maxwell chain units 
liquid-phase volume saturation (liquid vol./pore vol.) 
second Piola-Kirchhoff stress tensor, Pa 
time variable, s 
temperature, K 
displacement vector, m 
volume reference, m3 
point coordinates, m 

enthalpy of vaporization per unit mass, J kg- 
infinitesimal strain tensor 
infinitesimal autogeneous strain tensor 
non-linear component of the strain tensor 
effective thermal conductivity, W m-' K-' 
gas-phase dynamic viscosity, Pa s- 
liquid-phase dynamic viscosity, Pa s-  
effective density of the porous medium, kgm-3 
gas-phase density, kg mP3 
mass concentration of dry air in the gas phase, kgm-3 
mass concentration of water vapour in the gas phase, kgm-j  
liquid-phase density, kg m-3 
surface tension, N m- ' 
Cauchy stress tensor, Pa 
porosity (=pore vol./total vol.) 
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